Рассмотрим тетраэдр ABCD. Пусть M, N, P и Q являются серединами ребер AB, BC, CD и DA соответственно. Пусть R - это точка пересечения отрезков MQ и NP. Ваша задача - доказать, что линия AR перпендикулярна плоскости MNPQ.
Ответы
Чтобы доказать, что линия AR перпендикулярна плоскости MNPQ, мы можем воспользоваться свойством параллелограмма и треугольника.
Обратимся к треугольнику AMQ. Поскольку M и N являются серединами сторон AB и BC соответственно, то отрезок MN параллелен и равен половине отрезка AC. А по свойству параллелограмма, диагонали параллелограмма делятся пополам. Таким образом, точка R, являющаяся точкой пересечения отрезков MQ и NP, является серединой отрезка AC.
Аналогичные рассуждения можно провести для треугольников BNP, CPM и DQN, и прийти к выводу, что точка R является серединой отрезков BD, CD и AD соответственно.
Таким образом, линия AR проходит через середины всех ребер тетраэдра ABCD, а значит, она является медианой этого тетраэдра. Поскольку медиана пересекает плоскость MNPQ в ее центре (точке пересечения медиан), то линия AR будет перпендикулярна этой плоскости.
Таким образом, мы доказали, что линия AR перпендикулярна плоскости MNPQ.
авс треугольник
ав=вс
ас=12
т.о пересечение серединных перпендикуляров или ц. описанной окр. около δ
вк -высота на ас, совпадает с ок=8
ов=ос=оа=√(ок²+кс²)=√(64+36)=√100=10
sавс=вк*ас/2=(во+ок)*ас/2=(10+8)*12/2=108 см²
боковая сторона равна sqrt((12.4)^2+(40.6/2)^2)=sqrt(153,76+412.09)=
= sqrt(565,85)=23,7876